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SECTION I

INTRODUCTION

The nominal APATS field of view, for an array antenna with a

horizontal boresight, is + 600 in azimuth and between 450 and -150

in elevation; however, the contractor may modify these nubers as a

result of system trade-off studies. The spacing of the array's

elements should be chosen such that grating lobes do not occur when

the main beam is steered within the boundaries of the specified

field of view. In addition, It is desirable to space the elements

as far apart as possible, in the context of the grating lobe

constraint, in order to minimize array cost and complexity, since

larger separations permit a given aperture to be filled using fewer

elements.

Determination of an optimum or near optimum element lattice for

two dimensional arrays is expedited by a procedure which

incorporates the very elegant concept of the "reciprocal lattice*"

(RL) which is employed extensively in crystalography and solid state

physics. Basic RL concepts are covered in the next section, while

specific apolication of this type of analysis to APATS is deferred

until Section III. A brief conclusion section completes this work.

* This formation is due to J. Willard Gibbs. A basic introduction

to reciprocal space oncepts can be found in Introduction to Solid
State Physics, C. Kittel (J. Wiley and Sons, 1971) p. 56-69.



SECTION II

BASIC CONCEPTS

A 3-D space lattice of point isotropic scatterers can be

described by integral combinations of three primative translation

vectors. The vector from the origin lattice site (n - 0, p = 0, m =

1 0) to the site designated by the integers n, p and m is therefore,

Rnp m a na + + mc (1)

in which a, b and c are a particular set of primative translation

vectors often chosen for convenience. The position vector of

equation (1) ranges over the lattice as the indices are varied. If

the lattice is excited by a plane wave of wave vector k, each site

produces an outgoing spherical wave, since it is assumed that the

scatterers are isotropic. For elastic scattering these waves may

add constructively to produce an outgoing plane wave or waves

characterized by k', k' etc. such that,

I l - Ik' - Ik'"I - 2r/X (2)

Consider an incident, k, and outgoing, k', plane wave. The

phase of the wavelet scattered from the la.ttice at R relative tonpm

that scattered from the point at the origin is,

$nm(k")V =k . 'Rn p % k "R Rnpm

I - # - k') + R . R (3)
pmp npm npm

as illustrated for a 2-D lattice in Figure 1. If k' is a scattered

plane wave due to reinforcement of the wavelets from all lattice

6
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4

sites, the Dhase factor of equations (3) must be some integral

multiple of 21 radians for each set of (n, p, m) values,

b *npn (k,k') - 2wnpm  (n np integer or 0) (4)

or, using equations (3) and (l),

(5)

k • Rnpm = n(tk + p (* k . b) + m(A . 7) = 2wnnpm

and it is evident that this equation is satisfied for all allowed

values of n, p and m if and only if the "Laue Conditions For

Diffraction Maxima" are simultaneously satisfied:

Ak . a = 2wh, h i ...I,O,l... (6a)

Ak . b - 2wk, k .. 1,0,1... (6b)

Ak . c - 2l, 1 ...1,Ol... (6c)

These equations, interestingly, are satisfied if Ak is given by,

Ak hA + kB + IC hkl (7)

in which,

A = . 3a)

2 c xi (8b)

2w( xE) (Sc)

8



are primative reciprocal lattice vectors* which are constructed from

the primative space lattice vectors, and have units of inverse

length. The magnitude of the vector triple product in the

denominator of equations (8) is the volume of the primative unit

cell of the space lattice. Each noint of the reciprocal lattice

specified by h, k, 1 indices represents an allowed diffraction

maximum due to scattering from the corresponding space lattice. If

a single, isotropic scatterer is located at each space lattice

point, the diffracted beam will exist and be characterized by k'

such that,

k~kl k Ghkl (9)

in which the diffracted wave vector is labeled by the (h,k,l)

indices of the reciprocal lattice vector. The inverse

transformation should also be noted

a = x . (10a)

b =W (lOb)

2 w ( 
(lOc)

* kctually psuedo vectors, but this is irrelevant if coordinates

system of one handedness is used consistently.

+Since "a, 4 and c, as defined here, are pseudo vectors, the inverse
transformation is not valid if the coordinates system is inverted.

9



and will be used later in the analysis. To apply the above

diffraction theory concepts to a planar array, it is neces-

sary to determine the reciprocal lattice for 2-D periodic

arrangements of scatterers. Imagine an infinite collection of

identical 2-D lattices stacked to form a 3-D lattice such that the

lattice points are in vertical registry, i.e., the points of one

array are directly above those of its lower neighbor. If the

vertical separation between the arrays is allowed to increase

without limit, only one array, i.e. the one assumed to be stationary

with respect to a hypothetical observer, remains. In reciprocal

space, however, the reciprocal lattice points corresponding to the

separate arrays move closer together as the space lattice is

expanded, and, in the limit of infinite spacial separation, the

reciprocal lattice points coalesce into rods. If c is the array

separation vector which is increased without limit, the rods pass

through the reciprocal lattice points given by,

Ghk = hA + kB (II)

and are perpendicular to plane determined by A and B (i.e, along ),

as illustrated in figure 2 for a rectangular array. If the

reciprocal lattice of the array is viewed along the rods, it aopears

as the 2-D lattice of equation (I); however, it must be remembered

that it actually occupies three dimensions.

An -irray beam scanned to array azimuth ($) and elevation (s),

and formed at a wavelength, A, is represented by k in the previoils

analysis. The wave vector is conveniently expressed in terms of its

direction cosine angles,a, L, and y with respect to the array x

(horizontal), y and z (boresight) axes respectively:

10
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k k +k + kZx y z

(2w/X)(cosax + cosS/ + cosyZ) (12)

The direction cosines are related to the array azimuth and elevatian

by,

cosa = cos9sin$, cosA - sinO, cosy = cosGcos$ (13)

The grating lobes are identified with the primed wave vectors which

correspond to diffraction maxima, and can be identified by the h, k

indices of their associated reciprocal lattice rods.

For simplicity, consider first only the reciprocal lattice rods

lying in one plane along A. The origin of reciprocal space is

placed at an arbitrary point along one rod and the head of k is

placed at this point. The array beam, represented by k, is steered

off boresight by an angle y in the plane of the rods, and first

grating lobe will occur when k is scanned off boresight enough to

enable k' to contact an adjacent rod, as shown in figure 3. The

incipient grating lobe emerges parallel to the array, and by

construction equation (9) is satisfied. More specifically,

0 Iki sin y + I'1='1 2w/a (14)

or,

a = X(1 + sin y)(15)

expresses the element separation (referred to as optimum here) at

which the grating lobe peak direction is parallel to the array face.

For example, if y - 500 , the separation, a, can be as large as

0.536X before the grating lobe peak emerges from the plane of the

0 array (in the I direction).

12
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When considering grating lobe emergence in the whole plane of

the array, the reciprocal lattice should be viewed along the rods to

produce a 2-D lattice perspective.

In figure 4 a 2-D generalization of the construction of

figure 3 is illustrated. The inner circle represents the

projection of the tail of *k onto a plane nerpendicular to the

reciprocal lattice rods for the boundary of a conical scan volume of

half angle y about the array boresight, which is parallel to the

rods. The outer concentric circle represents the projection of the

outer boundary of the set of vectors obtained by subtracting k from

potential grating lobe wavevectors, k'. The rectangular reciprocal

lattice which corresponds to the optimum space lattice is found by

placing a rectangular array of rods about the outer boundary in such

i manner that the rods closest to the origin contact the boundary.

When a rod touches the boundary, equation (9) is satisfied by a

grazing (parallel to the array) grating lobe peak which is directed

f rom the origin rod to the point of contact. For the conical scan

volu-me the optimum rod lattice is obviously square, as illustrated

in figure 4, and has primative basis vectors,

A= (2w/)(l + siny,) 'i(16a)

4

B - (2w/M)( + siny,) Y' (16~b)

which corresponds to the space lattice basis,

U

41I

a , (l + siny) X (17a)

b -(W + siny) Y (17b)

a

14

L



LUU

U.

- 0i

Na.

U)UiJI- c' 0I

11 L

- - -J

0

15



4--

for which C Z is assumed just for coavenience in carrying out the

inverse transformation of equation (10).

If the reciprocal net is hexagonal in configuration, as shown in

figure 5, an optimum set of primative vectors is,

A = (1 + siny) X + (1 + sin) Y (18a)

(I-f3 + siny) ' + (I + siny) ^ (1b)- (1 X Y(1b

which transforms to the space lattice basis vectors,

a 0 ( + siny)- 1 + W( + siny) - l 'Y'(19a)

b (1 + sin') + X(I + sin ' (19b)

which also define a hexagonal lattice which is, however, rotated 300

with respect to the reciprocal rod lattice.

The array aperture area per element may be obtained from either

the space or reciprocal lattice primative vectors:

A e +axI 4w2 IX x 1 (20)e

For the two examples considered above,

square; A = A2 ( + stny) - 2  (21)
e

hexagonal; Ae 22 i

16
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and it is seen that, independent of the conical scan half angle y,

an hexagonal array lattice requires 13.4% fewer elements to fill a

given aperture than a square lattice - a result which has been

proven elsewhere

To determine the parameters of the space lattice with the

largest area per element, consistent with an absence of grating lobe

I peaks less than 900 off boresight for a particular field of view,

the following general procedure may be employed:

1) The wave vectors for the specified scan boundary
* are projected onto the plane perpendicular to the

array boresight, which is also the plane
perpendicular to the reciprocal lattice rods.

2) The projected scan boundary is extended by radii
of (2w/A) centered on each point of the scan
boundary. The envelope of these circles

represents the locus of all potential incipient
grating lobes with peaks directed perpendicular to

the array boresight, i.e., parallel to the array.

3) A reciprocal lattice type (triangular,
rectangular, etc.) is chosen and fit to the
envelope in such a way as to minimize the
reciprocal lattice unit cell area (' x ) without
placing any lattice rod, save for the rod at the

origin, within the envelope.

0 4) The space or element lattice is found by inverting

the reciprocal lattice of step 3, using, for
convenience, C Z, and equations (10).

Very often the symmetry of the field of view immediately

suggests in appropriate reciprocal lattice type or types for

consideration. For example, if the field of view has a mirror plane

of symmetry, only rectangular and isoceles triangular reciprocal

lattices need be considered. Clearly, the reciprocal lattice and

spice lattice, should, at a minimum, have as many symmetry elements

(mirror planes, rotation axes, etc.) as the field of view.

18
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The above perscription for element lattice unit cell area

maximization permits grating lobe peaks to occur parallel to the

array face. However, it has been noted 2 that mutual coupling

between the elements can cause "blind spots" when the beam is

steered in a direction such that a grating lobe peak lies parallel

to the array plane. To obtain the additional grating lobe

suppression desired, it is usually sufficient to add one half of a

full mainbeam width at the field of view boundary to the perimeter

of the field of view. As explained in more detail later, this

expedient places the first grating lobe null tangent to the array

face.

In the following section the analysis described here is used to

find the optinum element pattern for APATS.

19
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SECTION III

ANALYSIS AND RESULTS FOR APATS

As stated in the introduction, the nominal APATS field of view,

referenced to the local horizontal, is +600 in azimuth, and from 450

to -15 in elevation. Elevation is measured in a vertical plane

from the horizontal, while azimuth is measured in a horizontal plane

from the vertical plane which contains the array boresight. Sinc'

the array boresight will be elevated 100 - 150 to reduce scan loss

when the RV is in peak plasma, it is necessary to transform the

field of view into angular coordinates referenced to the array

coordinate system, in which Z lies along the boresight and X lies in

the array plane and along the horizontal. The appropriate

3
transformation matrix and equations have been given elsewhere

recently and will not be repeated here.

The scan boundary wave vector for the transformed field of view

is projected onto the array plane in figure 6 for a boresight

elevation of 10 and A = 13.3 cm. The axes have units of cm and

this projection is actually on a reciprocal space plane parallel to

the array plane. As discussed previously, the components of k which

give the projection boundary are,

k M (2w/1)cososins - (2w/x)cosa (23a)x

ky (2w/)x)sinO (2ir/X)coss (21h)
y

in which a and s are the angular coordinates of the transformed

field of view perimeter. The envelope of the ( k' - k) values was

produced graphically using a compass set to a radius corresponding
4 to 0.472 cm-

, the magnitude of the wave vector. Except for the

20
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origin, the rods of the reciprocal lattice, which appear as points

in the projection, must lie outside this envelope. However, the

closer the rods can be spaced in reciprocal space, the larger the

area will be per lattice site in the space lattice.

For a rectangular reciprocal net, the shortest primative

reciprocal lattice vectors are, in inverse centimeters,

A R - 0.80 X, R = 0.743 Y (24)

as illustrated in figure 6. The inverse transformation of equations

(10) yields ('-ff= used for convenience),

aR = 7.14 X(cm) - 0.537X 11 (25)

B 8.46 Y(cm) - 0.636X Y

and the space lattice is rectangular with its short dimension in the

horizontal direction. The area per element is 0.342x2 or 69.4cm2

for x = 13.3cm.

The symmetry of the field of view in the array coordinate system

implies that only isoceles triangular lattices need be considered in

addition to the rectangular lattice; however, there are two

alternatives for this type of lattice:

1) The half width of the k - envelope can be equal

to twice the column separation in the reciprocal

lattice.

2) The height of the envelope, from the origin to the
top, can be equal to twice the row separation in

the reciprocal lattice.

23



Primative reciprocal lattice vectors for these two cases are

depicted in figure 6. For case I these are, in inverse centimeters,

A A- 0.830 -, BTI -0.440 X + 0.747 Y (cm- ) (26)

and the inverse transformation produces,

= 7.14 k + 4.21 0.537X ^ + 0.316X Y (cm)

(27)

= 8.42 Y = 0.633X ' (cm)

* which is a nearly hexagonal space lattice, as illustrated in figure
2

7. The area per element is 0.340X , which is slightly less thin

that for the rectangular lattice previously considered. Thus this

triangular arrangement has no advantage over the simpler rectangular

periodicity.

The second type of triangular net has primatLive reciprocal

vectors,

A = 0.320 X - 0.372 Y, BT2 = 0.743 (cm ) (28)

which produce the space net,

a 7.6', K. = 0.57() K (cm)

(29)

= 3.84 1 + 8.46 Y 0.289 X + 0.636X ' (cm)

which Is illustrated in figure 8. Interestingly, the area per

element is 0.366X2 - about 7% greater than that of the rectangular

24
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lattice. This is equivalent to a 6.6% savings in elements with

respect to the rectangular lattice for the field of view and

boresight elevation considered.

Identical analyses have been performed for the suggested APATS

field of view as transformed to an array system with a 150 boresight

elevation. The salient results have been summarized in table 1,

together with those pertaining to the 10 boresight elevation case

just discussed. The reciprocal space construction for the 150 case

appears in figure 9.

With the array boresight elevated by 150, the projection of the

transformed field of view is more nearly centered about the origin,

or (0,0) reciprocal lattice rod, and it is possible to construct

primative reciprocal lattice vectors which are shorter than those

required for the 100 transformed field of view. In particular, the

optimum (T2) lattice for the 150 case has an area of 0.330x2 per
0element - a 3.8% increase over the 10 case, which translates to

3.7% fewer elements for the 15°0 case. The theoretical element gain

for this optimum case is,

G - i = 4n(0.380) = 4.78 (30)
2

or 6.79 dB - a value which should not be impractical; however,

element scan losses must also he considered and may indicate that

an element with less boresight gain and less scan loss in a tighter

lattice is more desirable.

Aq mentioned at the end of Section II, additional grating lobe

suppression may be necessary in order to reduce or avoid blind spots

at those points at the field of view boundary which produce grating

lobes parallel to the array. This suppression may be provided by

27
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expanding the field of view in such a fashion as to place the first

grating lobe null in the array plane when the main beam is steered

to the original field of view boundary. The optimum lattice is

determined using the expanded field of view and the procedure

outlined in Section II. To a good approximation, the expanded scan

area can be obtained from the specified scan area by adding one half

of a full beamwidth (for a beam steered to the original boundary) to

each point along the boundary. The additional scan angle is, of

course, a function of scan boundary position, and array size and

geometry.

The underlying principles are best illustrated by consideration

of a linear array of (N + 1) elements with spacing d. if the first

grating lobe is parallel to the array when the beam is scanned to an

angle 0' off horesight, equation (15) indicates that d must satisfy,

d - x[l + sine')] (31)

If the scan angle is reduced to a value of 3, such that the phase

change at any element,

&s - (2id/X)[sinO" - sin 91 (32)

is equal to 21/N radians, a null occurs in the direction where the

grating lobe peak had existed when the beam was steered to 0'.

Therefore, if the field of view boundary is at 9, 9' can be obtained

from,

9' 9 sin- IX/L + sine] 
(33)

in which L - Nd is the length of the array. Since the grating lobe

condition is satisfied at 9', the first grating lobe null will occur

31



at 9 as desired. Equation (33) also specifies the position of the

first outside (away from boresight) null for an array beam steered

to 9. Since the mainbeam is aporoximately symmetrical, adding half

a beamwidth to the field of view should provide very nearly the

desired result.

For an APATS field of vie4 and an array which has a rectangular

lattice with axes parallel to the array edges, equations (33) and

(15) can be immediately used to determine the optimum lattice

spacings needed to null the incipient grating lobes in the array

plane. For the 100 boresight elevation case, the maximum elevation

scan angle, at 00 azimuth, is increased from 350 to 39.30, while the

maximum azimuth scan, at 00 elevation, is increased form 59.60 to

65.10 as per equation (33) for an array having a width of 3m and

height of 2m. The reciprocal space geometry of figure 6 indicates

that only these two angular coordinates are important in the

determination of the optimum element lattice. The maximum element

separations can be computed by substitution of the expanded field of

view angles into equation (31) or (15):a

a 0.524x , b 0.610x (34)

The area per array element is 0.320x 2 , or 6.9. less than the

corresponding case without the additional suppression of the grating

lobes.
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For the 150 boresight elevation case, the expanded scan angles

are 34.5 °0 elevation, at 0 °0 aziuth, and 64.50 azimuth, at 00

elevation, and the primative lattice vectors are,

a 0.526xX, 0.638i (35)

which give 0.336N 2 area per element, or 6.4% less than the

corresponding case without additional grating lobe suppression.

Similar reductions obtain for triangular lattices, however

computation for these cases is far more difficult and provides no

additional insight.

3
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SECTION 4

CONCLUSIONS

Triangular array element patterns, if properly optimized, should

provide element savings of 6.5% and 5.5% for 100 and 150 boresight

elevations respectively, relative to the optimum rectangular array

lattices. Furthermore, it has been found that a 15° boresight

elevation produces a transformed field of view which permits a

reduction in element number of 3.6% compared to the 190 boresight

elevation case. These results are translated into element counts
for a 6m2 array in table 2. These values should be adjusted upwards

by approximately 6% if additional grating lobe suppression, as

described in Section III, is used.
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TABLE 2

ELEMENT COUNT VERSUS LATTICE JTYPE
(ARRAY AREA ASSUMED TO BE 6m )

100 Boresight Elevation

Lattice Type Element Count

Opt imum
Rectangular 992

Optimum
Triangular 927

150 Boresight Elevation

Opt imum
Rectangular 944

Opt imum
Triangular 893

* Grating lobe peaks are parallel to the array
at maximum scan angle. Placement of first
grating lobe null parallel to the array re-
quires ~ 60 more elements.
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APPENDIX

RECIPROCAL SPACE AND FOURIER SERIES

As is well known, a function which is piecewise continuous and

periodic with period "a" can be expanded in a Fourier Series. In

one dimension, the series has the exponential form,

f(x) - C(h) I exp[i 1; (h, integer) (36)

with coefficients,

a~ 2-wh
C(h) - f f(x)exp[-i xidx (37)

0

If the function is defined on i and has periodicity given by the

translation vectors a, V and *c which lie along the X, , and Z

directions, respectively, the expansion is readily generalized to,

(38)

2wh 2ik i 2 zl

f(R') = C(h,kl) hE k, iE e T x e

(h,k,l integers)

Which has the required translational invarience,

f(f) fCW + n- + pb+ nM-) (n,p,m integers) (39)

For convenience, equation (38) can be reexpressed,

-.

h~kl
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where,

K h X +k - + 1- Z(41)
h,k,l lal IbI Icl

is the set of reciprocal lattice vectors which correspond to the

orthogonal set a, b, and O. If these translation vectors are now

allowed to represent a general (non-orthogonal) periodicity of f( )
I-

the Fourier expansion must still be invarient when R is replaced by,

# +R + na + + mc (42)npm

Therefore,

f(') - fW +*K nPM) CO) EeIK . W

ir") e (43)
I R+R

C(K) Ee e npm
K

which is satisfied if,

K . R 2wn (n, integer) (43)npm

which is identical to equation (5). As was demonstrated in Section

II, '"k must be a reciprocal lattice vector for equation (44) to be

satisfied, and Fourier expansion of a function which is periodic In

three dimensions therefore requires only reciprocal lattice vectors:

f r) C(G eh,k,l"R*f(T) ) c(- , ,i),, "a
hkl h,k,l
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In which,

) = : e h,k,l dV

h~k'l V

where integration is performed over the volume of the unit cell

formed by the chosen set of primative translation vectors used to

specify the periodicity of f(7). If f(r) is a space lattice defined

by a Dirac Delta Function at each site, all of the Fourier expansion

coefficients are unity and it is evident that the reciprocal lattice

is the Fourier trAnsform of the space lattice.
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